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Abstract 
In generating advisories, current ground Air Traffic 
Management (ATM) automation tools such as 
NASA’s Center-TRACON Automation System 
(CTAS) and MITRE’s User Request Evaluation Tool 
(URET) rely upon an aging ground ATM 
infrastructure to provide current state and to predict 
future intentions of aircraft. Significant improvement 
in these advisories could be achieved by tapping into 
the high-precision state and intent data available 
onboard today’s air transport aircraft. A recent 
NASA/FAA data exchange experiment was 
conducted to assist in quantifying the potential of 
datalink to improve ground-based ATM automation 
performance. This paper reports the results of a study 
into the quantitative characteristics of the improved 
lateral intent information and its potential impact on 
automation conflict detection performance. The 
results suggest that the downlink of flight 
management system (FMS) state and intent data will 
significantly improve the performance of current 
technology ground automation. 
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Introduction 

Joint NASA/FAA research to evaluate the potential 
impact of a live air-ground data exchange has 
recently been concluded . This joint research, known 
as the En Route Data Exchange (EDX) Project, 
investigated the feasibility and operational benefits of 
sharing information between users and the ATM 
system. This most recent Phase 2 part of the EDX 
Project involved the real-time downlink from 
Honeywell Flight Management Systems (FMS) 
onboard revenue-carrying United Airlines (UAL) 
B777 aircraft to a CTAS research lab at NASA Ames 
Research Center (see Figure 1). 

A recent series of analyses were conducted into the 
potential lateral trajectory prediction enhancements 
afforded by the data downlink of FMS-provided state 
and intent data. These analyses included: 

1) Input Comparison Analysis: comparing the 
FMS downlinked information to information 
obtained from current surveillance, modeling, 
and flight planning sources; 

2) Trajectory Prediction Analysis: comparing 
trajectories synthesized from FMS downlinked 
information versus current CTAS predictions; 

3) Lateral Route Intent Analysis: comparing 
FMS intent as inferred from the downlinked 
Active and Active+1 waypoints versus the Host 
flight plan (with amendments); and 

4) Conflict Detection Analysis: comparing 
anticipated performance of conflict detection and 
resolution decision support tools with and 
without FMS downlink. 

The results of the first two analyses were previously 
reported in Ref. 1. The details of the final two are 
summarized herein. For more details on these EDX 
Phase 2 analysis results, see Ref. 2. 
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The EDX Phase 2 field evaluation involved 
downlinking aircraft state, performance, preference, 
and intent data from United Airline’s Boeing 777 
FMS-ACARS-equipped operational airline flights 
through Denver ARTCC (ZDV) airspace. The 
downlink was accomplished over the existing VHF 
ARINC ACARS Data Network System (ADNS). The 
aircraft downlinked data are received from the 
ACARS Ground Station via modem to the EDX 
laboratory at NASA Ames Research Center, where 
they are retained in data files. 

Forty-eight B777 aircraft were equipped with EDX 
downlink capability over the course of the EDX 
Project. The equipped EDX aircraft downlinked a set 
of primary parameters at a nominal rate of once per 
minute, along with a number of secondary parameters 
that may be useful in future analyses (see Ref. 1). 
The primary parameters included FMS-derived 
aircraft position, velocity, and Active and Active+1 
waypoint intent data. 

Data Analysis Process 

The overall data analysis process is illustrated in 
Figure 1. The EDX data is made available to the 
Lateral Route Intent Analysis, along with the other 
nominal trajectory prediction input data (Host track 
and flight plan data and Rapid Update Cycle (RUC 2) 
atmospheric data) that are normally used by CTAS. 
To support the Trajectory Prediction Analysis, the 
input data are fed to a Baseline version and a 
specially modified EDX version of CTAS. Details of 
the EDX CTAS modifications are presented in Ref. 
3, but basically the modifications allow CTAS to 
utilize EDX data in lieu of its nominal sources. The 
Trajectory Prediction Analysis analyzes the 
comparative outputs of the respective versions of the 
CTAS Trajectory Synthesizer (TS) module (see Ref. 
4) to determine improvements relative to the 
observed truth trajectories. Finally, the outputs of the 
Lateral Route Intent Analysis and Trajectory 
Prediction Analysis provide the input data required 
for the Conflict Detection Analysis. 

Lateral Route Intent Analysis 

The Lateral Route Intent Analysis compares the 
differences in the planned horizontal route 
constructed with and without the incorporation of 
EDX waypoint information from the aircraft FMS. It 
should be noted that route intent is intrinsically 
dynamic in nature – Host route intent is affected by 
flight path amendments entered by the controller, 
while EDX route intent was affected by pilot inputs 
into the FMS. 

 

Figure 1  EDX Phase 2 Data Analysis Process 

Accordingly, the Host lateral intent at a given time 
was taken to be the original Host flight plan adjusted 
by any flight plan update messages received from the 
Host computer up to that point. The FMS lateral 
intent was inferred by adjusting the current 
instantaneous Host flight plan with the FMS Active 
and Active+1 waypoints as most recently received 
from the EDX data. Downstream of the FMS Active 
and Active+1 waypoints, it was assumed that the 
FMS flight plan rejoined with the instantaneous Host 
flight plan. 

A major issue was discovered in the lateral intent 
analysis having to do with the design of the downlink 
process. In the original EDX Phase 2 experiment 
planning, it was decided to use only four characters 
to represent waypoints. In real-world operations, a 
large number of flights utilized 5-character 
waypoints, resulting in waypoint name ambiguities in 
the collected database. Fortunately, range and bearing 
to next waypoint were also downlinked, so we were 
able to resolve many of the ambiguities, especially in 
post-processing mode (real-time mode would only be 
able to resolve the next waypoint using 
range/bearing, and downstream predictions would 
still have problems). Naturally, we recommend that 
future implementations of FMS intent downlink use a 
5-character representation for the waypoint name and 
continue to downlink next-waypoint range/bearing to 
further enhance data integrity. 

Lateral Trajectory Prediction Model 

To help automate the Lateral Route Intent Analysis, a 
simple trajectory prediction model was developed. 
This trajectory prediction model constructed the Host 
lateral intent and FMS lateral intent at a given point 
in the trajectory, and predicted the aircraft’s path 
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along each respective intended plan for a prescribed 
fly-out time into the future. The respective lateral 
intent errors were then computed at each prediction 
point as the distance difference between the predicted 
intent point and the corresponding point on a path 
recorded from Host radar truth. Even though the 
downlinked GPS/INS position measurement is 
intrinsically more accurate, we used Host radar truth 
as a common basis to be consistent with the Baseline 
CTAS and EDX CTAS, which reset the prediction at 
each major cycle to the current radar position. The 
intent errors were resolved into cross-track and 
along-track components, relative to the radar truth 
path. We then advanced the start point a prescribed 
time step (nominally 12 seconds to coincide with the 
normal Host update cycle), reset the current location 
to coincide with Host radar truth, and predicted the 
respective lateral paths and corresponding errors for 
the next prediction “window.” This process was 
repeated until one of the data sources had been 
exhausted for that flight. 

This prediction technique closely mimics the way 
that the CTAS Trajectory Synthesis (TS) model 
works, as illustrated in Figure 2, which compares the 
simple lateral prediction algorithm with the CTAS 
trajectory synthesizer operating on the same March 
11th Denver arrival flight. Referring to the figure, the 
upper half shows the performance of the simplified 
trajectory prediction model as it projects along the 
Host flight plan and FMS intent as inferred from the 
downlinked Active and Active+1 waypoints. In this 
case, as was typical, the FMS intent followed the 
truth trajectory (as measured by the Host radars) 
quite accurately (indistinguishable at the scale of the 
figure). 

Readily evident in the figure, the simplified 
prediction model attempts to accurately portray the 
waypoint switching logic employed by the CTAS 
Trajectory Synthesizer to correct itself when the Host 
flight plan is not being followed, as detected by the 
radars. The trajectory predictions are made repeatedly 
every time step, starting from the current location as 
measured by the radars. The switching logic applies 
rules to infer whether the current “next waypoint” 
truly represents intent, or whether the intended next 
waypoint should be switched to a downstream 
waypoint. As illustrated in the figure, the simplified 
logic does a credible job of emulating the CTAS 
waypoint-switching behavior. The one major 
difference is that the CTAS version infers that the 
final waypoint switch is to a waypoint further 
downstream, the metering fix. Also notable is the 
curvature of the CTAS-predicted trajectories in 

comparison to the simplified model, which assumes 
straight-line flight between waypoints. 

The successful emulation of the CTAS Trajectory 
Synthesizer is significant. It enabled us to examine a 
much greater number of flights than would have been 
practical using CTAS. The reason for this is that we 
could automatically execute the simplified model in a 
batch “script” that can operate on a large data set in 
“fast-time”. Further, we were able to incorporate 
features into the analysis script that accommodates 
anomalies in the data, most notably, an 
accommodation of FMS waypoint ambiguities as 
discussed previously. 

Host and FMS Predictions using
Simplified Trajectory Model

Host and FMS Predictions from
CTAS Trajectory Synthesis Function

UAL311 04/10/01 Arrival at Denver from Indianapolis

Direction
of Flight

Direction
of Flight

Host
FMS

Start of
Data

Baseline CTAS
Waypoint
Switching

End of Data

FMS Predictions
and Host Radar
Truth Coincide

Emulation of
Host Waypoint
Switching Logic

Figure 2 Typical Arrival Showing a Comparison 
of Trajectory Prediction Methods 

Figures of Merit (FOMs) 
The primary figures of merit (FOMs) for the Lateral 
Route Intent Analysis are the Host Lateral Route 
Intent Error (HLRIE) and FMS Lateral Route Intent 
Error (FLRIE). The HLRIE is defined as the 
difference between the radar truth trajectory and the 
Host flight plan (with updates) as extrapolated over a 
“projection window” (nominally 20 minutes to 
coincide with the planning horizons of typical 
decision support tools). Similarly, the FLRIE is 
defined as the difference between the radar truth 
trajectory and the inferred FMS intent as extrapolated 
over the projection window. 
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To calculate the differences between planned and 
actual trajectories over the projection window, we 
computed difference samples at a one-second interval 
and computed the mean and standard deviation of 
these samples over the projection window. The 
LNAV flag available in the FMS downlink is an 
indication of whether the FMS is engaged or the 
aircraft is being vectored. Accordingly, we ignored 
all windows when the LNAV flag indicated that the 
FMS was disengaged. 

In addition to the magnitude of the HLRIE and 
FLRIE, the figures of merit were also resolved into 
cross-track and along-track components, relative to 
the radar truth path. The moving window average of 
all these FOMs was then calculated over each flight. 
In addition, we recorded which projection window 
exhibited the maximum HLRIE and FLRIE, and what 
that maximum value was. We also recorded which 
projection window contained the largest average 
HLRIE and FLRIE, and recorded that value as well. 

We then grouped the flights into separate data sets for 
Arrivals, Departures, and Overflights and calculated 
ensemble means and ensemble standard deviations of 
all flights in the respective data set. In all, 191 
Arrivals, 166 Departures, and 204 Overflights (561 
flights in total) were analyzed in this way; the flights 
occurred from February through early April of 2001. 
Finally, we calculated “histograms” that show the 
distribution of how many flights in each category 
(Arrivals, Departures, Overflights) exhibited HLRIE 
and FLRIE FOMs in size “bins” ranging from less 
than 2 nautical miles (nmi) to over 50 nmi. 
Histogram analysis is explained more thoroughly in 
the next section. 

Key Results 
Downlinked FMS intent significantly reduces the 
average and maximum lateral intent error for 
Arrivals, Departures and Overflight. Figure 3 
summarizes the average and maximum HLRIE and 

FLRIE for the flights examined in the study. For 
Arrivals, the reduction in the average lateral route 
intent error is considerable – a reduction from over 6 
nmi to 1.72 nmi. The ensemble standard deviation, 
which indicates the “dispersion” of the data about the 
mean, is also tightened up remarkably from 5.51 nmi 
down to 1.89 nmi. The averages are reduced 
considerably in the Departures and Overflights 
categories as well, although not quite as dramatically 
as the case with Arrivals. The improvements in the 
maximum columns are deceivingly conservative. 
Most of the maximum conditions for the downlinked 
FMS cases were very short-lived – they occurred 
primarily during times when FMS Active and 
Active+1 transitions were occurring. We believe that 
a more careful implementation of the FMS intent 
downlinking process would eliminate these transient 
effects. 

A significant population of flights exhibit a mean 
Host Lateral Intent Error (HLRIE) greater than 4 
nmi, the nominal US IFR airway half-width. While 
these ensemble statistics are interesting and 
representative of the overall improvement achievable 
by FMS intent downlink, it is even more revealing to 
look closely at the distribution of the number of 
flights with HLRIE levels in certain ranges. Figure 4 
presents a histogram summary plot of the results. As 
shown, over 54% of the Arrivals exhibited mean 
HLRIE values greater than 4 nmi. Correspondingly, 
25% of the Departures and only 4% of the 
Overflights showed a mean HLRIE greater than 4 
nmi. Notable in the histogram plot is the large 
population of Arrivals with HLRIE values in the 12 
to 18 nmi bins. We believe this stems from a practice 
where the aircraft gets cleared to a downstream 
waypoint (probably the metering fix) – the FMS 
Active waypoint is updated in accordance with this 
clearance, but the Host flight plan is not updated for 
one reason or another. 

Figure 3  Average and Maximum Lateral Route Intent Error for 561 Flights 

191 Arrivals 166 Departures 204 Overflights
Average Maximum Average Maximum Average Maximum

HLRIE FLRIE HLRIE FLRIE HLRIE FLRIE HLRIE FLRIE HLRIE FLRIE HLRIE FLRIE

Ensemble 
Mean (nmi) 6.06 1.72 16.24 11.09 2.46 1.53 7.79 6.06 1.09 0.47 4.35 2.78

Ensemble Std 
Dev (nmi) 5.51 1.89 11.44 9.96 2.32 1.89 8.65 6.24 1.48 0.59 6.01 5.04

 



5 
American Institute of Aeronautics and Astronautics 

Mean Host Flight Plan Deviations from Radar Truth
(20-minute moving window average over entire flight)
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Figure 4  Histogram Plot of No. of Flights with 
Certain HLRIE Levels 

Downlinked FMS Intent greatly reduces the 
population of flights exhibiting mean Lateral Intent 
Errors greater than 4 nmi (see Figure 5). As shown, 
the number of Arrivals exhibiting mean FLRIE 
values greater than 4 nmi is reduced to 13% of the 
191 population (compared to 54% for the HLRIE). 
For Departures, the mean FLRIE was reduced also to 
13% of the 166 population (as compared to 25% 
HLRIE) and none of the Overflights showed a mean 
FLRIE over 4 nmi (as compared to 4% HLRIE). Also 
notable in Figure 5 is that the previous population of 
Arrivals with HLRIE’s in the 12-18 nmi bins is 
eliminated. 

Mean FMS Flight Plan Deviations from Radar Truth 
(20-minute moving window average over entire flight)
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Figure 5  Histogram Plot of No. of Flights with 
Certain FLRIE Levels 

The preceding analyses focused on a representative 
20-minute projection window. An interesting point of 
investigation is to determine to what degree the FMS 
intent downlink (Active and Active+1 waypoints) 
supports a 20-minute planning window. Accordingly, 
for each 12-second time step through the data, we 
determined the amount of flight time represented by 
the Active and Active+1 waypoints from the current 
position and velocity. We then calculated the mean 
“look-ahead” time represented by the two FMS 
waypoints over the flight. For Arrivals, the average 

look-ahead time represented by downlinked FMS 
Active and Active+1 waypoints was 13.2 minutes; 
for Departures and Overflights the corresponding 
average look-ahead times were 33.5 and 37.5 
minutes, respectively. The distribution of average 
look-ahead times among Arrivals, Departures and 
Overflights is presented in Figure 6. 

Average FMS Look-ahead Times
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Figure 6  Histogram of Average Look-ahead 
Times Afforded by Two FMS Waypoints 

 

Conflict Detection Analysis 

The use of EDX downlinked data by future ATM 
automation conflict probes will improve the accuracy 
of conflict detection methods. Current technology 
conflict probes have to contend with the inherent 
inaccuracies of radar-based position and velocity 
measurement and the limitations of Host flight plan 
data when controllers do not keep the Host computer 
intent model up to date. Downlinked data from an 
aircraft’s FMS should offer considerable increases in 
current position, current velocity, and intent 
accuracy. 

Existing State and Intent Data Accuracies 

In flight, FMS-equipped jet aircraft position and 
ground speed errors will typically be based on 
sophisticated inertial and GPS avionics. On the 
ground, the accuracy of ATC sensing of aircraft 
position and speed will be limited to ground radar 
sensing and data processing systems. Typical GPS-
derived and Radar-derived one-sigma surveillance 
errors are shown in Figure 7. 
 

For Active and Active+1 waypoints 
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 GPS-
derived 

Radar-
derived 

Position error, 
p (nmi) 

0.00551 0.452 

Ground Speed error, 
v (nmi/min) 

0.00423 0.264 

1based on 10.2 m Selective Availability (SA)-off, GPS horizontal 
position error from Ref. 5 

2assuming measurement uncertainty based on mosaiced Air Route 
Surveillance Radar (ARSR) radar from 100 x 100 nmi range 
from Ref. 6 

3based on 0.13 m/s Selective Availability (SA)-off, GPS ground 
speed error performance from BAE Systems ALLSTAR GPS 
receiver from Ref. 7 

4based on 15.5 kt standard deviation Overflight ground speed error 
from Ref. 1. 

Figure 7  Typical FMS and Host-derived Current 
Position and Velocity Errors 

Specific current position and velocity errors will be a 
function of a multitude of factors including (for GPS-
derived data): the relative positions of a GPS receiver 
and the satellites it is tracking; and (for radar-derived 
data): range and azimuth from radars, single-sensor 
vs. mosaicing, radar registration, non-Mode C 
altitude estimation, antenna tilt and skew, refraction, 
coordinate conversion and timing uncertainties. In 
general, these errors will range significantly based on 
scenario-specific factors. For example, radar-derived 
position error will typically vary between 0.15 nmi to 
0.9 nmi based purely on range from the radar source 
(see Ref. 7). However, as one surmises from Figure 
7, the typical radar-derived data current position and 
velocity errors are on the two orders of magnitude 
greater than that derived by using GPS data. 

In addition to the improved state information, better 
predictions on lateral intent due to downlinked FMS-
based intent data should improve conflict probe 
prediction accuracy. Previous investigations have 
shown the percentage of route clearances reflected in 
Host flight plan amendments to be as low as 18% 
(see Ref. 8). Using the EDX and Host flight plan 
intent data collected during the Phase 2 field test, one 
may derive an intent-based predicted position error, 

i , as a function of lookahead time. The method 

used for determining i  is as follows. For a given 

aircraft flight and lookahead time, the Simple 
Trajectory Prediction Model (explained in the 
previous section) was used to project an aircraft 
forward in time, a given  minutes ahead, along its 
flight plan. (Note: the varying ground speed in our 
predictions matched the actual sensed ground speeds, 
and, therefore, uncouples the prediction error based 
purely on horizontal intent from that based on the 

ground speed.). Then, at time , the aircraft’s actual 
position (based on Host radar data) was compared 
with the aircraft’s predicted position and the relative 
position (with distance, D, and lateral and 
longitudinal components, x and y, respectively), were 
determined (see Figure 8). (Note: because of the 
ground speed matching, lateral deviations over time 
result in both cross-track and along-track position 
errors.) 

 

Figure 8  Intent-based Predicted Position Error 
Determination 

This data was collected for: 
 all valid lookahead time windows from 5 to 30 

minutes, 
 all Arrival, Departure, and Overflights, 
 EDX and Host flight plan-based intent data, and  
 only cases where the LNAV flag was “on” 

(Note: future conflict probes that receive LNAV 
“off” information are presumed to revert to a 
velocity-vector-based trajectory prediction). 

Next, a representative prediction error deviation due 
to intent, i , was determined for both EDX and Host 

data cases for lookahead times ranging from 5 to 30 
minutes. For a given lookahead time and data case, 

i  was calculated by first determining the two-

dimensional mean and standard deviation values: 
x , y , x , and y , respectively. Then, we assumed 

0, yx over large numbers of aircraft trials 
because of no known biasing phenomena (and, in the 
case of a consistent bias error, a good conflict probe 
would seek to improve its predictive model to take 
out such a bias). Finally, we calculated a 
representative i  assuming that the predicted 

position variances were composed of non-correlated 
x  and y -based position variances, such that 

222
yxi  (for a citation of a similar 

calculation for a horizontal 2D standard deviation 
quality measures for GPS position accuracy, see Ref. 
9). The determined i  for Arrivals, Departures, 

Overflights, and all aircraft, for both EDX and Host 
data cases, are shown in Figure 9. 
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Figure 9  EDX and Host Intent-based Predicted 
Position Error as a Function of Lookahead Time 

Figure 9 illustrates that arrivals exhibit a maximum 
intent-based predicted position error at 20 minute 
lookahead times, while overflights exhibit increasing 
errors beyond 30 minute lookahead times. The 
primary reason for this is the natural convergence of 
potential arrival routes at larger lookahead times. 

As we expected, the downlinked EDX waypoint 
information provides significant reductions in 
predicted position error over that found in predictions 
based on Host flight plans. However the potential 
reduction in predicted position error due to use of 
EDX data is a function of both lookahead time and 
phase of flight. 

The greatest reductions in intent-based predicted 
position error occur for the arrival phase of flight for 
moderate lookahead times of 10 to 20 minutes. The 
arrival phase of flight was expected to provide the 
most fruitful opportunity for EDX improvement 
because of the previously noted greatest Host Lateral 
Intent errors (see Figure 4). The moderate lookahead 
times for Arrivals offer the greatest potential benefit 

(i.e., greatest 
EDXiHosti ) because they are the 

lookahead times where the Active and Active+1 
waypoints are valid. Beyond Active+1 waypoints, the 
EDX predicted intent reverts back towards that of the 
Host predicted intent. Overall, the Arrival i  

increases up to 20 minutes lookahead and then 
decreases. This occurs because of the convergence of 
potential Arrival routes for larger lookahead times. 

Departures exhibit values of i  less than Arrivals, 

but greater than Overflights and an overall potential 

reduction in predicted position error that peaks at 5 
minutes lookahead. Note: that values of i  for 

lookahead times of 25 and 30 minutes were deemed 
statistically insignificant. 

Overflights exhibit a steadily increasing i , but a 

slowly growing potential reduction in predicted 
position error that are greatest at the furthest 
lookahead time. This is primarily because of the large 
typical lookahead times for Overflight Active and 
Active+1 waypoints (see Figure 6). 

When averaging i  over all valid flights, we obtain 

significant reductions in i  throughout the “All” 

lookahead times. 

Having convinced ourselves that downlinked EDX 
position, ground speed, and intent data are likely to 
improve our conflict probe performance, the key 
question is By how much? 

Conflict Detection Performance Analysis 
Methodology and Results 

A number of previous analytical and real-time 
conflict probe-based analyses of stochastic conflict 
detection performance have been performed Refs. 10-
14. In this effort, an alternative method to determine 
order of magnitude impacts on conflict probe 
performance was developed and implemented and is 
now explained. 

For the purposes of simplicity, a two-dimensional 
conflict test case was posed. This test case consisted 
of two jet aircraft with a 90 deg crossing conflict at 
an arbitrary initial range and bearing from each other. 
Both aircraft are flying level in en route airspace at a 
constant ground speed of 450 kts with no wind. A 
conflict probe is predicting the aircraft conflict using 
a flight-plan-based intent model for each aircraft. The 
flight plan-based predicted track error exhibits the 
statistical behavior previously analyzed. No traffic 
flow management constraints are active. The initial 
conditions are shown in Figure 10. 

i 
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Figure 10  Conflict Detection Test Case:       

Aircraft A-Relative Reference Frame Geometry 

Now, we will assume that the predicted position error 
for a given aircraft at a future time, , can be 
represented by the expression, pp ,   Assuming that 

this predicted position error can be decomposed into 
independent, Gaussian, random, predicted position 
errors due to current position, current velocity, and 
intent, p , v , and i  respectively, we can derive 

the expression: 

22222
, )( ivppp  (1) 

Taking the values for GPS and radar-derived p , 

v  and i  previously derived from Figures 7 and 9 

for values of lookahead time between 0 and 30 

minutes, we can calculate 
2

, pp and its individual 

components. The individual variances of the 3 
components for both EDX and Host data in both 
Arrival and Overflight cases were calculated and are 
shown in Figures 11 and 12. 

 
Figure 11  EDX and Host-derived Predicted 

Position Component Variances: Arrivals 
 

 
Figure 12  EDX and Host-derived Predicted 
Position Component Variances: Overflights 

The results of Figures 11 and 12 show that, for 
Arrivals, significant intent errors dominate the 
variance of predicted future positions up to 30 minute 
lookahead times. Velocity errors dominate the 
variance of predicted future positions for both longer 
lookahead times for Arrivals and generally for all 
non-Arrivals. EDX intent and velocity data offer 
significant reductions in predicted position variance 
from baseline Host-data levels, except in the case of 
long lookahead time Arrivals (> 25 min). In both 
EDX and Host data cases, current position errors are 
negligible, and, in the EDX case, the current velocity 
error is negligible as well. 

Next, Equation (2), derived in Ref. 14, describes the 
variation in aircraft conflict miss distance as a 
function of the predicted trajectory position accuracy 
at the point of closest approach for Aircraft A and B: 

2
,,

2
,, BppApprf

   (2) 

Assuming that the predicted position error for each 
aircraft will be the same, we ultimately derive: 

2, pprf
    (3) 

In previous Seagull conflict probe analysis research 
(see Ref. 11), the probability of conflict for a 2D, two 
aircraft conflict was analytically derived as: 

)
2

(
2
1)

2
(

2
1)(

ff r

f

r

f rR
erf

rR
erfconflictP  (4) 

where: 
R  is the Protected Airspace Zone radius, 

fr  is the separation at the closest point of approach 
(CPA), and 

fr  is the one sigma minimum separation error. 

Equation (4) can, in turn, be used to determine the 
probability of conflict for our test case for arbitrary 
initial relative distance and bearing (of Aircraft B 
from Aircraft A). These conflict probabilities can 
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then be plotted in the relative Aircraft A reference 
frame, thus creating a “conflict probability map” 
(similar to what has been done previously in Ref. 14). 

For the theoretical case of perfect current and future 
knowledge of aircraft states (i.e., p = v = i =0), 

the conflict probability map would look like Figure 
13. In this case, any intruder aircraft initial conditions 
within Region I would yield P(conflict)=1.0 (i.e., 
100% probability of correctly identifying the 
conflict) and those within Region II would yield 
P(conflict)=0.0. In this special case, the P(false 
alarm)=P(missed alerts)=0 and P(correct alerts)=1.0. 
Note: we assume that “correct alerts” consist of both 
an alert if the intruder aircraft eventually violates the 
Protected Airspace Zone (PAZ) or no alert if there is 
no such eventual violation. 

 
Figure 13  Conflict Prediction Probability Map 

assuming Perfect Knowledge 

In the practical case of imperfect current and future 
knowledge of aircraft states (i.e., p , v , i >0), the 

conflict probability map will look similar to those in 
Figure 14. In this case, any aircraft initial conditions 
will yield P(conflict)<1.0 and the probability map 
will yield a contour plot of conflict probabilities with 
P(conflict) getting smaller with distance from the 
Protected Airspace Zone. In the imperfect case, 
P(false alarm), P(missed alerts), and P(correct alerts) 
are between 1.0 and 0.0. Then, depending on the 
given initial conditions, either P(correct alerts) + 
P(missed alerts) = 0 (in the case of an intruder 
aircraft’s initial conditions in Region I of Figure 13) 
or P(correct alerts) + P(false alarms) = 0 (in the case 
of an intruder aircraft’s initial conditions in Region II 
of Figure 13). 

Going back to our conflict detection test case to 
quantify the expected impacts of EDX downlinked 
data on conflict detection performance, we first 
assume a value of 5 nm for R , the diameter of the 
PAZ, which equals the nominal en route US airspace 

separation standard. Then, we calculate 
fr from 

Equation (3) and the data in Figure 9. Finally, we 
determine fr  based on conflict geometry, and we use 
Equation (4) to derive a conflict probability map for a 
given set of r ,  initial conditions and for either 
EDX or Host Data cases. Conflict probability maps 
for EDX and Host data cases were developed for the 
Arrival and Overflight data. The Arrival results are 
shown in Figure 14. In order to better understand the 
relative impact of EDX data, the two conflict 
probability maps were differenced and are shown in 
Figure 15. 

 
a) EDX Data 

 
b) Host Data 

Figure 14  Conflict Probability Maps for EDX and 
Host-based data: Arrivals 
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Figure 15 Differenced EDX-Radar Conflict 

Probability Map: Arrivals 

The conflict probability maps in Figure 14 display 
what we expected: isoprobability lines that extend 
further out in time and wrap more tightly around the 
PAZ for predictions using the higher precision EDX 
data. The differenced conflict probability maps in 
Figure 15 show the general trend of positive 
probability differences along the conflict centerline 
and pockets of negative probability differences just 
outside the extended 45 degree lines from the edges 
of the PAZ. These differences can be interpreted as 
quantitative EDX-based reductions in conflict probe 
missed alert and false alarm rates as follows. 

Taking the conflicting case first (i.e., the intruder is 
in Region I of Figure 13), let’s assume the predicted 
probability of conflict using Host data is P(Host) for 
a given initial relative position. Since, based on the 
initial position, we know that the aircraft will be in 
conflict, P(correct alert)=P(Host). This also means 
that P(missed alert)=1-P(Host). Now, looking at 
Figure 15, we notice that the differenced (EDX-Host) 
probabilities for a given initial position are some 
value, , such that the predicted probability of 
conflict using EDX data is  greater than the 
predicted probability of conflict using Host data. This 
means that P(EDX)=P(Host)+ . Therefore, P(correct 
alert) using the EDX data is greater than P(correct 
alert) using the Host data by , and, likewise, the 
P(missed alert) using the EDX data is less than 
P(missed alert) using the Host data by . 

A similar analysis can be done for the non-conflicting 
case to show that P(false alarm) using the EDX data 
is less than the P(false alarm) using the Host data by -
 . Thus, the difference statistics in Figure 15 
provides a map for expected missed alert and false 

alarm impacts of EDX downlink data for all relative 
aircraft initial conditions. Close inspection of Figure 
15 reveal the order-of-magnitude missed alert and 
false alarm impact statistics for our crossing conflict 
probe test case and are shown in Figure 16. 
 
Missed Alert Rate Impact False Alarm Rate Impact 
At 6 minutes lookahead time for 
a crossing collision, missed alert 
rates drop a maximum of 50%. 
Longer lookahead times result in 
smaller missed alert rate 
reductions approaching 10%. 

For lookahead times between 0 
and 13 minutes for “near-
conflicts” with minimum 
separation distances roughly 
2*PAZ diameter, false alarm 
rates drop a maximum of 10+%. 

Figure 16  Order of Magnitude EDX Missed Alert 
and False Alarm Rate Impacts for Arrivals 

For the analysis conducted, missed alert rate 
reductions can be as high as 50% in the case of 
arrivals and can provide 30+% reductions for 
overflights. False alarm rate reductions are lower 
than the missed alert rate reductions, and are 
expected to decrease 10+% or less. Specific 
reductions in missed detection and false alarm rates 
will vary based conflict initial conditions, the specific 
position, velocity, and intent errors experienced, and 
other factors not accounted for (such as wind 
prediction errors). 

Conclusions 

In the work reported on in this paper, a number of 
key findings can be identified. First of all, 
downlinked FMS intent significantly reduces the 
average and maximum lateral intent error. The 
reduction in the average lateral route intent error is 
greatest for Arrivals, but considerable for Departures 
and Overflights as well. 

The future value of downlinking only Active and 
Active+1 waypoints will be limiting in the case of a 
current technology conflict probe lookahead time 
(~20 min) for Arrival aircraft. Designers of next 
generation surveillance systems such as Automatic 
Dependent Surveillance-Broadcast (ADS-B) should 
consider broadcasting additional waypoints. 

In terms of contributing to overall predicted position 
variance, the overwhelmingly important components 
are intent and current velocity. For Arrivals, 
significant intent errors dominate the variance of 
predicted future positions up to 20 minute lookahead 
times. Velocity errors dominate the variance of 
predicted future positions for both longer lookahead 
times for Arrivals and generally for all non-Arrivals.  

Downlinked FMS data are expected to significantly 
reduce missed detection and false alarm and alert 
rates of current technology conflict probes. Potential 
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missed alert rate reductions of as high as 50% for 
arrivals were calculated; expected false alarm rate 
reductions are lower than the missed alert rate 
reductions, on the order of 10% or less. Specific 
reductions in missed detection and false alarm rates 
will vary based conflict initial conditions, the specific 
position, velocity, and intent errors experienced, and 
other factors not accounted for (such as wind 
prediction errors). 

The results presented here suggest that significant 
benefits could be obtained in trajectory predictions 
and subsequent ATC advisories arising from specific 
ATM automation incorporation of live, downlinked 
EDX data. Some of the ATM decision support tools 
that could benefit include CTAS’ Direct-To, Conflict 
Probe, Traffic Management Advisor, and En Route 
Descent Advisor automation and MITRE’s URET. 
Future work should aim at validating the potential 
benefits through comparison of the performance of 
these specific ATM automation tools with and 
without the data exchange. 

The beneficial impacts of the downlinked EDX data 
performed in this effort are just the dawn of a new era 
in planned ATM service improvements leveraging 
the addressed data link. Recently released Ref. 15 
details many new one-way and two-way data link-
enabled ATM services envisioned for all flight 
domains. Future analyses similar to this one will need 
to be performed to predict and validate the potential 
impacts of the new data link-enabled ATM services. 
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